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1 IntroductionWithin the class of potentially very large scale problems, shape optimizationoccupies an important place, being an essential part of the design of struc-tures and mechanisms. The reduction of the continuous problem to a �niteone via discretization or spline function approximations (Braibant and Fleury1984) can lead to a very large nonlinear constrained optimization problem(NLP). Because of its origin, however, this NLP can be extremely sparse, asmeasured by the �ll-in that appears in the rows of the Jacobian of the result-ing constraints. In fact, since most relations that need to be satis�ed by thecontinuous problem are local (involving an unknown function at a point andits derivatives), the �nite problem constraints will have nonzero entries onlyat a very small set of neighboring points. It is therefore desirable to designan algorithm for the NLP that takes advantage of this structure and still hasgood convergence properties.This is the requirement that motivates our work. One of the traditionalways of solving the NLP is sequential quadratic programming (SQP) (Bert-sekas 1982). At each step of this iterative procedure, a constrained quadraticprogram is solved. The desirable features of such an algorithm would be toachieve fast convergence, to generate easy-to-solve quadratic programs, andto preserve sparsity for fast linear algebra resolution. Fast convergence isusually associated with superlinear convergence (Bertsekas 1982). A \notdi�cult" quadratic program is one that has a positive semide�nite matrixin the objective function because the resulting problem is convex. Resultsfrom the past decade show that such quadratic programs have only polyno-mial complexity (Wright 1997), and are easy to solve from the viewpoint ofcomplexity theory.Unfortunately, traditional SQP approaches do not achieve, at the sametime, superlinear convergence and convexity and sparsity of the resultingquadratic program (QP). Using the Hessian of the Lagrangian of the NLP atthe current point results in a QP that is sparse but not generally convex. InBetts and Frank (1994) sparsity and convexity of the QP are preserved byusing the exact Hessian of the Lagrangian with a diagonal modi�cation, butthe rate of convergence is reduced to a linear one. Although an accelerationcan be observed by adaptively reducing the diagonal perturbation to zero, itis not clear whether superlinear convergence and convexity of the QP can beguaranteed under the usual assumptions. Finally, Powell's method (Powell1978), based on the BFGS formula, will result in a convex QP and will exhibit2



superlinear convergence (with some line search modi�cations; see Bertsekas1982) but it will destroy the sparse pattern of the problem.In this paper we show that a very large class of NLPs, many of whichoriginate in the discretization of optimal shape design optimization problems,can lead to superlinearly convergent SQPs with convex and sparse QPs. Thekey observation is that these NLPs typically have far more total constraints(equality and inequality) than unknowns, and it is therefore likely that therewill be as many active constraints as variables. Therefore, near convergence,the sequence approaches the behavior of the Newton step for the nonlinearequation corresponding to the satisfaction of the active constraints, regardlessof the matrix used in the QP. A constant, sparse positive de�nite matrix willbe enough to ensure the convexity and sparsity of the resulting QP.An SQP algorithm, implemented in Matlab, that solves the QP based onan interior-point technique (Vanderbei 1994) with sparsity support is usedfor the NLP that results from the discretization of a cam design problem.Comparisons between this approach and Powell's algorithm are provided, aswell as between the interior-point and Matlab QP resolutions.2 The Optimization ProblemThis section describes the class of problems under consideration and su�cientconditions to obtain superlinearly convergent SQPs with convex and sparseQPs.2.1 The Continuous FormulationThe target problem in our case has a �nite number of equality constraints,and an in�nite number of inequality constraints, indexed by a real variablewhose domain is a �nite, closed interval. Since we wish to incorporate two-dimensional shape optimization as part of our model, we also include a shapefunction, y(t), as a variable in the inequalities to be satis�ed. Extension tomultidimensional shape optimization is similar, and we therefore restrict ourattention to just one shape parameter. Let t 2 [a; b] be the parameter of theshape. Let F be a �nite set of points in [a; b]. Let D be a domain in Rm.The problem that we consider is as follows:3



minZ f(y(t); t; x) +Xti2F g(ti; x) x 2 D (1)NiXj=1 aij(x; t)y(j)(t) + fi(x; t; y(t)) � 0 t 2 [a; b]; i = 1::p (2)gi(x; ti; y(ti)) = 0 t 2 F; i = 1::p: (3)We wish to include derivatives of the shape function, y, in the formulation,because several meaningful constraints are based on them. A good example isthe convexity of the shape constraint, which could involve the shape functionand its �rst two derivatives (depending on the formulation).2.2 The Discretized Optimization ProblemThe main emphasis of this work is on the treatment of the nonlinear opti-mization problem that results from discretizing (1). The resulting problemhas the familiar form minf(x) (4)gi(x) � 0; 1 � i � n (5)hi(x) = 0; 1 � i � p: (6)For the targeted class of problems, the constraints have a particular struc-ture. There are few equality constraints corresponding to the set F , comparedwith the constraints originating from the discretization of the inequality con-straints (2). Since the original constraints (2) are local constraints (for a givenpoint ti, only the values of y(t) and its derivatives at ti enter the constraintequations), the resulting inequality constraints at a discretization node ti,gi(x), depend only on the value of y at ti and a small, �xed length set ofneighboring points. The Jacobian matrix of the constraints is therefore verysparse, having an almost banded structure.Since the inequality constraints in (4) originates in (2), their number isat least the number of discretizing points. We assume that (4) is such thatthe number of constraints exceeds the number of variables. This assumptionis reasonable, especially if there are at least two inequality constraints in (2).4



We also invoke the standard assumption that x� is regular, in other words,that the Jacobians of the equality constraints and the active constraints arelinearly independent at x�.Assumption E Our major assumption is that the total number of activeconstraints (equality constraints plus active inequality constraints) is exactlyequal to the total number of variables. This condition is di�cult to checkon (1), but can be observed to hold in most applications of interest. Oneexplanation is that, in most cases, the objective function in (1) is a functionalthat depends on the values of y(t) at all points t (one way to rigorously de�nethat is with respect to the Frechet derivative). If there were fewer constraintsactive than the number of variables, a direction of descent could be foundfor this case.2.3 The Sequential Quadratic Programming AlgorithmThe method used here to solve (4) is the sequential quadratic programming(SQP). At each point xk the following problem is solved:minrf(xk)Td+ 12dTHkd (7)rgi(xk)Td+ gi(xk) � 0 i = 1::n (8)rhi(xk)Td+ hi(xk) = 0 i = 1::p: (9)An Armijo-rule-based line search is used to determine x(k+1). As a penaltyfunction to measure the extent of infeasibility, we use the usual exact penaltyfunction P (x) = maxfgi(x); jhj(x)j; i = 1::n; j = 1::pg: (10)The line search evaluates decreases of the function f(x) + cP (x), where c isa su�ciently large constant that is nondecreasing at each iteration, althoughit becomes constant after a su�ciently big k. As a variant of this methodone can solve an additional quadratic program of the same form as (7) anddo an arc search instead of a line search, in order to guarantee superlinearconvergence. For details, see (Bertsekas 1982).However, the most important factor in securing superlinear convergenceis the choice of the Hk matrix. Let L(x�; ��) be the Lagrangian functionassociated with the program (4). To obtain superlinear convergence, the5



matrix Hk has to be \close" in some sense to r2xxL(xk; �k). In addition,there are two desirable properties that Hk should satisfy. It should be positivede�nite to ensure that (7) can be reasonably easy to solve (since a quadraticprogram with a matrix that is not positive de�nite is NP hard). Also it Hkshould be sparse for computational e�ciency.A choice is Hk = r2xxL(xk; �k). The sparsity of this problem is preserved,but there is no guarantee that Hk will be positive de�nite. Another classicalchoice is based on the BFGS rank one update (Powell's algorithm) Bertsekas(1982). Although this will generate a positive de�nite matrix Hk, the rank-one update will destroy the sparsity. Therefore, neither of these choices willlead to a program (7) that is both sparse and convex.Our goal is to determine whether it is possible to obtain SQP with convexand sparse QPs that achieve superlinear convergence, under the assumptionsset forth at the end of the preceding subsection.Theorem 2.1 Assume that the solution x� is a regular point of the con-straints of (4) and that the number of equality constraints plus the numberof active inequality constraints equals the number of unknowns in (4). LetHk A; 8k, any constant matrix. Then, if xk ! x�, and the step length al-lowed by the penalty function is at least unity for all k su�ciently large, theconvergence is superlinear.Proof A su�cient condition to obtain superlinear convergence is to be ableto take unit steps along dk that decrease the penalty function and to ensurethat the sequence Hk be uniformly bounded, positive de�nite on the columnspan of Z� and satisfy limk!1[Hk �r2xxL(xk; �k)]Z�: (11)Here Z� is matrix whose columns are a base for the nullspace of the Jacobianmatrix of the active constraints (Bertsekas, Prop 4.32, 1982).Since x� is regular, the Jacobian of the active and equality constraintshas full row rank. By Assumption E, it follows that this Jacobian is squareand invertible. Therefore, its nullspace is 0, or Z� = 0. It is immediate thatany constant sequence A satis�es all the requirements on Hk for superlinearconvergence of xk. rrrOne way to ensure that the step length is unity for all k su�ciently bigis to solve an additional QP and to do an arc search (Bertsekas 1982). Since6



this is not the focus of our investigation, we simply assume the stepsize tobe unity for all su�ciently big k.An interesting conclusion is that sequential linear programming (A=0)will actually achieve superlinear convergence under these conditions. Thecases of interest are, of course, those for which A is positive semide�nite,resulting in a convex and sparse QP (7). In our experiments we chooseHk = 0 and Hk = I.The fact that the superlinear convergence does not depend on the choice ofthe matrix A might appear surprising. In reality, the fact that the Jacobianof the constraints is invertible (it is square and full row rank) constrainsthe problem to such an extent that the direction found by (7) is actuallydetermined almost in completely by the constraints. Thus, for su�cientlybig k, the method behaves like Newton's method: it solves the nonlinearsystem that requires the equality constraints and active equality constraintsto be equal to zero. However, far from the solution, (7) ensures that thedescent of the penalty function and guarantees good global behavior.In all fairness, we must emphasize that AssumptionE is almost impossibleto check on the initial problem (1) or its discretization (4). This assumption,however, is expected to hold in most cases of interest, especially when theobjective function in (1) presents some uniformity with respect to the valuesof the shape function y(t).3 Numerical ExperimentsAs an example, consider the problem of designing the shape of a cam. Al-though simple, this example o�ers the possibility to test di�erent theoreticalissues related to the optimization procedure. The objective of this exampleis to maximize the area of the valve opening for one rotation of the cam. Thevariables of the optimization problem are the m values rk; k = 1; :::; n de�nedin Fig. 1. The shape of the cam is assumed to be circular over an angle of65� of its circumference, with radius R, and the m radii rk representing thedesign parameters are equally distributed over an angle of 45�.Assuming a simple, linear relationship between the shape of the cam andthe valve opening area yields the following objective function:f = ��R2v mXi=1 ri; (12)7



where Rv is a constant related to the geometry of the valve. Note that theexpression of f involves all the ri's (all portions of the shape intervene in theobjective function). Assumption E therefore is expected to hold. If thereare too few inequalities active, there might be ri's that do not appear in anyactive constraint. But then, f would be unbounded.A number of p constraints written asrm�p2 +k = Rt; k = 1; :::; p; (13)require the tip of the cam to be on a circle of radius Rt. Additional con-straints enforce convexity of the optimal shape and limit its curvature. Withthe notations of Fig. 1, the convexity constraints are equivalent to the re-quirement that the sum of the areas of triangles OAk�1Ak and OAkAk+1is larger than the area of the triangle OAk�1Ak+1. In terms of the designparameters rk, these constraints become�rkrk+1 � rkrk�1 + 2rk�1rk+1 cos(��) � 0; k = 2; :::;m� 1 (14)where �� = 0:8�=(m � 1) is the angle between two consecutive radii. Ad-ditional convexity constraints are imposed at r1 and rm, as well as at two�ctitious points r�1 and rm+1:�r1r2 �Rr1 + 2Rr2 cos(��) � 0�Rrm � rm�1rm + 2Rrm�1 cos(��) � 0�Rr1 �R2 + 2Rr1 cos(��) � 0�R2 �Rrm + 2Rrm cos(��) � 0: (15)Curvature is controlled through the maximum allowed variation in consecu-tive radii, that is,�rk+1 � rk�2 � ��(��)�2 � 0; k = 1; :::;m� 1; (16)with � a given constant.The following default values were used for the model constants:m = 101 and 401; p = 3; R = 1:0; Rv = 1:0; Rt = 2:0; � = 1:5: (17)Since a feasible initial estimate of the design parameters is di�cult toobtain, the cam is initially considered to be a circle of radius R. Optimal8



solutions obtained for di�erent numbers of design parameters are presentedin Fig. 2. The solid line solution is obtained for m = 101 design parameters,while the dashed line solution corresponds to m = 401.Clearly, an increased number of design parameters lead to more stringentcurvature constraints (by decreasing the value of ��) resulting in a solutionwith lower optimal cost function. Because of the discrete nature of the prob-lem solved, the cam will still exhibit corners, which become less prominentas �! 0. If needed, the shape can be smoothed by spline interpolation.Figure 3 shows the inuence of the coe�cient � in (16) on the shape ofthe optimal cam. Results are presented for � = 1:5 (solid line) and � = 2:0(dashed line). Larger values of the cost function can be obtained by increasingthe value of �, which corresponds to milder curvature constraints.In order to prove the theoretical observations of Section 2 related tothe advantages of interior-point methods and sparse solvers, two di�erentquadratic programming algorithms were used. The �rst one is providedwithin Matlab and uses an active set strategy, similar to the one describedby Gill et. al. (1981). The second one, Loqo (Vanderbei 1994 and 1997), isan interior-point algorithm that uses a one-phase primal-dual path-followingmethod. Table 1 presents the evolution of the norm of the Newton direction,using the interior-point algorithm, with m = 101. The following three casesare considered:� H = 0 - equivalent to a sequentially linear; programming method;� H = I;� Rank-one updated QP matrix (Powell's algorithm, without the correc-tion for the arc search).As noted in Section 2, superlinear convergence is obtained in all three cases.However, signi�cant e�ciency improvements are obtained when the QP ma-trix is constant (either zero or identity) when compared with the case inwhich the matrix is updated. This is due to the loss of sparsity generatedby the rank-one update. Table 2 compares the CPU time (in seconds), asreported by Matlab, spent in the QP solver in each of the above three cases.The advantage of using interior-point methods is highlighted by the timerequired to solve the same three cases by using the quadratic programmingmethod available in Matlab (see Table 2).Similar results are obtained when the number of design variables is in-creased to m = 401. In this case, however, the active-set algorithm from9



Matlab failed to converge. This is due to the very large number of activeconstraints, which in this case becomes 2m + p+ 1 = 806. Results obtainedby using the Loqo algorithm are presented in Table 3.4 ConclusionsWe have proposed a simple SQP algorithm that achieves superlinear conver-gence for a class of problems while generating convex and sparse quadraticprograms for improved computational performance. As an additional advan-tage, only �rst derivative information is used. The assumption here is thatthe number of active constraints will equal the total number of variables atthe optimal point. The SQP simply uses a constant positive semide�nitematrix for Hk at each step. The cases tested were Hk = 0 and Hk = I. Asexpected, there were no major di�erences between the sequences of iteratesin the two, since, near the solution, both behave like a Newton method forthe nonlinear system made of the equality and active inequality constraints.For all methods used, superlinear convergence, as well as a number of ac-tive constraints equal to the number of variables, were observed. Therefore,Assumption E did hold, as assumed. However, the computing time neededfor the solutions of the QP has been almost an order of magnitude less forour approach compared with the case involving the rank-one updates fromBFGS. The interior-point algorithm used presents several orders of magni-tude performance improvement over the algorithm provided by Matlab.Nevertheless, it is di�cult to check whether a given problem satis�es As-sumption E, although some guidelines can be followed. Future work willinclude investigating the possibility of relaxing some of the assumptions usedin this paper and the use of similar algorithms for dynamics-based cam de-sign.ReferencesBetts, J. T., and Frank P. D., 1994, A Sparse Nonlinear OptimizationAlgorithm, Journal of Nonlinear Optimization Theory and Applications, Vol.82, No. 3, pp. 519{541.Bertsekas, D. P., 1982, Constrained Optimization and Lagrange Multi-10



plier Methods, Academic Press, N.Y.Braibant, V. and Fleury, C., 1984, Shape Optimal Design Using B-splines,Computer Methods in AppliedMechanics and Engineering, Vol. 44, pp. 247{267.Fletcher, R., 1987, Practical Methods of Optimization, John Willey &Sons, N.Y.Gill, P. E., Murray, W., and Wright, M. H., 1981, Practical Optimization,Academic Press, N.Y.Powell, M. J. D., 1978, The Convergence of Variable Metric Methods forNonlinearly Constrained Optimization Calculations, Nonlinear Programming3 (O. L. Mangasarian, R. Meyer and S. Robinson, eds.), pp. 27{63, AcademicPress, N.Y.Vanderbei, R. J., 1994, LOQO: An Interior-Point Code for QuadraticProgramming, Technical Report SOR-94-21, Statistics and Operations Re-search, Princeton University, Princeton.- - - , 1997, LOQO User's Manual - Version 3.10, Technical Report SOR-97-08, Statistics and Operations Research, Princeton University, Princeton.Wright, S. J., 1997, Primal-Dual Interior Point Methods, SIAM, Philadel-phia.Zhou, J. L. and Tits, A. L., 1996, An SQP Algorithm for Finely Dis-cretized Continous Minimax Problems and Other Minimax Problems withMany Objective Functions, Siam Journal of Optimization, Vol. 6, No. 2, pp.461{487.
11



Table 1: Convergence AnalysisQuadratic MatrixIteration H = 0 H = I Rank-1 update1 4:596750 4:596745 4:5967452 8:025247 � 10�1 8:025299 � 10�1 8:025299 � 10�13 2:860296 � 10�2 2:860317 � 10�2 2:860336 � 10�24 8:256211 � 10�4 8:256270 � 10�4 8:255900 � 10�45 4:890005 � 10�7 4:898711 � 10�7 4:9219911 � 10�76 5:246231 � 10�11 2:973782 � 10�11 1:070026 � 10�11Table 2: E�ciency Analysis, m = 101Quadratic MatrixH = 0 H = I Rank-1 UpdateLoqo 0:30 0:32 2:47Matlab 124:84 145:22 151:27Table 3: E�ciency Analysis, m = 401Quadratic MatrixH = 0 H = I Rank-1 updateLoqo 3:05 3:10 28:51
Figure 1: De�nition of Design Parameters12
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Figure 2: Inuence of the Number of Design Parameters on the OptimalShape
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Figure 3: Inuence of the Curvature Constraints on the Optimal Shape13


